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Abstract. The binding energies and rRMs radii of nuclei in the mass region 16 < A < 208
are calculated in the Jastrow cluster expansion method by including the second-order
correction to the energy. The Reid soft-core NN interaction has been employed in the
calculations. The binding energies are predicted reasonably well for the nuclei in the mass
region A ~ 90 whereas they are underestimated in nuclei with A < 56 and overestimated
in nuclei with 4 > 120. The calculated RMS radii are in good agreement with the experi-
mental data for nuclei with A < 56 but not for heavy nuclei where considerable compression
is predicted. The contribution of the three-body cluster correction to the two-body cor-
relation energy is estimated to be at the most 9%, thereby indicating a good convergence of
the cluster expansion. Our results are compared with those recently obtained from the
Brueckner—Bethe-Goldstone method using the same NN interaction.

1. Introduction

A systematic derivation of the cluster expansion of the energy in the Jastrow approach
(Jastrow 1955) to the nuclear many-body problem was given by Iwamoto and Yamada
(1957). There are very few applications of this method to calculate the binding energies
of finite nuclei. Dabrowski (1958a, b) was the first one to investigate the details of this
method in connection with the binding energy of 1O using a specific central nucleon—
nucleon (NN) interaction. Recently there has been considerable interest in finding out a
connection between the Brueckner—Bethe-Goldstone (BBG) reaction matrix approach
(for a review of this BBG approach, see Day 1967) and the Jastrow cluster expansion
(JCE)method. With reasonable and well defined approximations, Day (1971) has shown
that the sum of a particular set of diagrams from the perturbation theory gives a many-
body wavefunction of the Jastrow form. Attempts (Lassey and Sprung 1971) have also
been made to remove some of the approximations made by Day (1971). For a special
choice of NN interaction, the nuclear matter binding energy calculated (Wong 1971a)
from the JCE method in the independent pair approximation comes out to be much
larger than that calculated from the BBG reaction matrix approach. This difference
is shown (Wong 1971a) to arise from the absence of the dispersion effects in this simpler
form of the JCE method. With the inclusion of dispersion effects and with the special
choice of correlation function, many authors (Wong 1971b, Providencia and Shakin
1971, Shakin 1971, Ristig and Clark 1972) have attempted to show how the JCE method
for the energy of a rhany-body system could be related to the BBG reaction matrix
method. These suggestions for the special choice of the correlation function implicitly
amount to either doing the complicated BBG calculations or making comparatively
simpler Jastrow calculations quite difficult. The motivations behind the present work
are: (i) to calculate the binding energies and the sizes of nuclei in the mass region
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The Jastrow cluster expansion method for finite nuclei 719

16 < A < 208 in the JCE approach by employing a realistic NN interaction, since we
have not yet noticed such calculations for heavy mass nuclei; (ii) to see whether there isa
qualitative agreement between the predictions of the JCE and BBG methods for the
nuclear binding energies and sizes;; (iii) to find out whether the JCE approach is suitable
in the case of realistic NN interactions such as the Reid soft-core potential (Reid 1968);
and finally (iv) to study the convergence of the JCE method for the binding energy and
RMS radius.

The details of the calculations are given in § 2. The results are presented in § 3 and
and the conclusions are summarized in § 4.

2. Energy calculation with Jastrow wavefunction

The hamiltonian of the A-nucleon system can be written as
H=)T+ YV (1)
] i<j
where T is the kinetic energy operator and Vis the NN interaction. We employ the
variational wavefunction of the form

¥ = {[] f,-jjl(D(I,Z,...,A). )
i<j

Here @ is a determinantal wavefunction of 4 nucleons and f;; is the correlation function.
From the nuclear binding energy calculations in the BBG approach, the wound integrals
are found to be strongly channel dependent (Grange and Preston 1973, Demos and
Banerjee 1972). The wound integral in a particular channel is a measure of the deviation
of the correlation function in that channel from unity. This implies that one should
employ channel-dependent correlation functions in the Jastrow approach. The effect
of the state-dependent correlation functions in the Jastrow approach is discussed by
Schafer and Schutte (1972). For a state-dependent correlation function f;;, the simple
product in equation (2) is not a symmetric function under the exchange of particle co-
ordinates since f;; does not commute with f;,. In order to make the total wavefunction
¥ in equation (2) antisymmetric, the product in the square bracket should be symmetrized
since the determinant @ is an antisymmetric function of A nucleons. The square bracket
in equation (2) indicates this symmetrized product of correlation functions. In the
calculations reported in this paper, we use the channel (ISTJ)-dependent correlation
function with one variational parameter f in each channel. The form

o =1-e7t" (3)

for the correlation function is chosen in view of the Reid soft-core NN interaction
(Reid 1968) employed in the present calculations. The gaussian form is preferred to the
exponential form since df/dr vanishes at r = 0. The calculations are performed for
nuclei which can be described by the closure of either a major shell or a j subshell for
both protons and neutrons. In equation (2), the determinantal wavefunction ® is con-
structed from the single-particle orbitals ¢,(i) where « specifies all the necessary quantum
numbers for the orbital. In a variational approach, all the unknown functions f;; and
¢.(i) should be determined by minimizing the total energy of the system. However, such
a general procedure is very laborious in the case of heavy nuclei under investigation.
In the absence of correlations (f;; = 1), it is found (Gunye and Warke 1970) that the
wavefunctions @ generated from the single-particle harmonic oscillator wavefunctions
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with one variable parameter b = (h/Mw)*/? provide a good approximation for com-
puting binding energies and RMs radii for the nuclei under consideration here. Hence
in the present Jastrow calculations, only the channel parameters §'S7” in the correlation
functions f'5T/ and the oscillator parameter b in the determinantal wavefunction @ are
determined variationally. The Jastrow expansion of the energy E with the correlated
wavefunction ¥ can be obtained by following the derivation of Iwamoto and Yamada
(1957) and Dabrowski (1958a, b)

E=K+E,+E;. 4
The kinetic energy K and the two-body correlation energy E, can be expressed as

K = ¥ CilTliy (%)

E, = %Z CHIWalif., (6)

ij
where the suffix a indicates the antisymmetrization of the matrix element and

h2 2
Wiz =f%2V12—Zf1z Y GASfi2+Vif12- V). (7
i=1
The non-commutativity of the channel-dependent correlation functions f;;, f; and the
interaction operator makes the treatment of the three-body effects very complicated.
Since we are interested only in estimating the contribution from the three-body clusters,
we neglect the effect of this non-commutativity. In this approximation, the three-body
correlation energy can be expressed as
Ey = Y (CifITyhyolif) s = 3<HWo . Gilhlif ) + 3 (CkIW, 2hyslifk)  — i Walif),

ij ik
- - L B )
X C kIR kDo = KRk o CKIT1E + o KikIV oy g+ WahasfifkDs)

+ 3 ), (kW physlijkDy, — (Wi ChllAlkD,) (8)
ijkl
with
hy=f3-1 ©)

The sums in equations (5), (6) and (8) run over the occupied single-particle states in .
For spherical nuclei with central NN interactions, the two-body correlation energy E,
can be expressed as

E,=3% Y QT+1D)RJI+HCE WP nly. (10)

niSTJ

The index ISTJ for W, in equation (10) indicates the channel dependence of the cor-
relation function. The nuclear C coefficients in equation (10) were evaluated previously
(Gunye and Warke 1970). In order to simplify the calculations for evaluating the con-
tribution from three-body cluster terms E,, we make the following approximations:

J

. 1
(i) 2 <kjlhlljy, = = O 2 <ijlhlii>,
]

(i) ik, = 0 for i, j # k, 1.

The averaging approximation (i) is expected to be good for the short-range correlation
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function h(r,,). The orthogonality of the single-particle wavefunctions will make the
matrix element {ijlh|kl> quite small for i, j # k, [ in the case of the short-range function h.
The explicit calculations are carried out in the case of 'O to test the validity of these
approximations. The value X (kjlhlkj) = —0-47 (for k = 0s 1 orbit) is very close to
A™'ZCjlklijy = —042. The value <ijlhjij>, = —001 for i = j(0s3) # k = l(Is3). The
value of Z;(kjlhllj>, is exactly zero for I, # [, or j, # j,. The maximum value of this sum
is —0-2 when k = 0s § and | = 1s § orbits. However, the contribution of such terms
comes only in one of the three-body cluster correction terms. With the approximations
(i) and (ii), E; can be written as

« 1
Ey = — 3 <ij W12|U>a(<ijlhiij>,+ ZZ; CklRlkDy,
if &

nh? (1

1
—— 2 |5 2 <O, Y <kNOFKDY ,— = 3 <Ol (11)
m T\AG Kl 25

with O, = (dh/dr)Y,,. The matrix element {ijl0 ]ij>,, however, vanishes in view of the
parity considerations. Then employing the C coefficients we can finally express E; in
the form

h)) ,CS,TJ, ‘1 hlSTJ ‘1
Ey= = ¥ QT+ 1)@+ 1) C Gl W™y |2 Srtm i nD
niSTJ ’ Zn'cjn’l.n’l
+1 X (2T'+1)(21'+1)c§,,f"!,,<n'1'lh's“|n'z'>). (12)
nl’'S'T'J

In reducing the first term in equation (11), we have replaced (ijlh*™|ij), the matrix
element, by its average value with the corresponding C coefficients for the channel ISTJ
as the weighting factors.

The two-body correlation energy E, in equation (6) indicates that W;; is the effective
NN interaction in the model space. In BGG method, the second-order contribution
is already included in deriving the effective NN interaction whereas it is not so in the
present approach. Consequently one has to explicitly add the second-order (in W)
contribution to the energy. An additional reason for including the second-order con-
tribution is that the tensor force contributes substantially to the binding energy and, in
particular for spherical nuclei, this contribution comes from higher orders in the non-
central part of the NN interaction. The usual second-order perturbation correction
has only one term whereas in the Jastrow approach, this correction has three terms
(Wo00 1966). One of these is just like the ordinary second-order correction and the other
two terms arise from the non-orthogonality of the complete set of correlated basis
functions. In the lowest order of h, one of the latter terms is proportional to the off-
diagonal matrix element of 4 and the other to its square. In view of the approximation
(ii), we have not evaluated these terms in this paper. Since the proportionality constant
in these correctionsis the two-particle two-hole energy (evaluated in the Jastrow approach
to zeroth order) and its square, this contribution can be quite important. However, due
to the complicated nature of these terms, particularly in large nuclear systems, we have
no alternative but to omit these corrections in the present paper. We have evaluated
only the usual second-order (in W) contribution to the energy by following the approach
of Bhaduri and Warke (1968). The density-dependent effective interaction is obtained
by applying the criterion that it reproduces the correct second-order contribution in
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nuclear matter. From this condition, the required effective interaction V, is given by

(rR|VIk+q,p—q><k+¢,p—qlVIFR)

{rR|V P RY = ) (13)
ef f > k%q e(k,p, q, U)
The prime on the summation indicates the sum is to be taken over the regions
k,p <kg and |k+ql.lp—gql > kg,
where kg is the Fermi momentum. The energy denominator in equation (13) is
h2 2mU

h L}

where the additional energy for the occupied states is taken as — U. After carrying out
straightforward algebra and averaging over the directions of @ = ¢+ ¥k —p), we get

AVielr'> = Vvl 3 WG

15
& elk,p,q U) (15

Here j, is the spherical Bessel function. In general V' = V.+§,,V% where V(V;) is
the central (tensor) component of the NN interaction. In order to simplify the expression
for Vi, we carry out averaging of 1/e over k, p within the Fermi surface and of Q over
the region of integration for fixed gq. Let us define P(U, q/2kg) and Q(g) as follows

f d3k f dﬁ;m(f d3k f d3p)_1

k<kg pSkp k<kg p<kg
|k+ql>kr Ip—q|>kr

__3mdply 4
T 20Ah%qke |2k
%, 0°

%1

N

Qg =
Evaluating these rather involved integrals, we obtain

AT —454° = 5324+ 7503 +1744% + 1254+ 63

i <
206—2) fori<1

-
ke 401243
10

for 2> 1, (16)

where 4 = s = g/2kE,
P(U, x) = x3[36v3 +232v+1)>—48(v+ 1)2 +54(v + 1) — x*(8v + 3)]

+1—-x
4 - 1) 4 5x2(1 — 2v%) — x*] In| >
+4x[5v(2— v)(v+ 1)* + Sx*(1 = 2v¥) —x*] n(v+1+x)
2v+1—x
s _ 2 2(42 _ 4
+3x[(2v—3)2v+1)? + 6x“(dv* —1)+x ]ln(——2v+l+x

+20vx* In

4(v+1+x)(v-+-l—x))
2v+1+x)2v+1—x)
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v+1+x)(v+1—x)
(v+1)2

2v+1+x)(2v+1—x)
4v+1+x)(v+1—=x)

+A(v+1)3(v2=3v+ l)ln(

+20x%(1+3v—2v%) ln(

forx <1

2v+1-—
402 ln((2v-+-1+x)( v+ x))

42

PU.x) = 4v+x)P3+22v+x)+4[(v+x)° =5(v+x)* = 5(v+x)*+ 1] In(v+x +1)
+4[(v+x)° =5v+xP+50+x)? - 1]In(v+x—1)
+8[5(v+x)> = (v+x)°] In(v + x) for x > 1, (17)

where v = (m/h?)(U/qkg). For U = 0, this expression for P(U, x) reducis to that derived
by Euler (1937) and by Levinger et al (1960). Using these functions Q(q) and P(U, x},
the effective interaction takes the final form

3 * Lo
MV elr> = -m—n%ka'(r)V'(r’) J.O ds sP(v, $5)j(@nj(Qr). (18)

The second-order contribution to energy is incorporated by replacing W™ with
WSTI 1 ST in equation (10) where V577 is obtained from equation (18) after replacing
V' by W' on the right hand side.

The RMs radii R,, are calculated with centre of mass correction. The final expression
for R,, in Jastrow cluster expansion is

AR} = ¥ QT+ 1)QJ+1D)CH <l (1+ STy + R} (19)

niSTJ
n'l’

where the three-particle cluster correction R? to the mean square radius R is obtained
from the corresponding energy expression in equation (12) after replacing W,, by

2
firi,.

3. Results and discussion

The binding energies and RMs radii of nuclei in the mass region 16 < 4 < 208 are cal-
culated by using the Reid soft-core NN interaction (Reid 1968). The variational para-
meters B577 in the correlation function of equation (3) and the oscillator size parameter
b are determined by minimizing the energy K + E, given in equations (5) and (6) res-
pectively. The rRMs radius is then calculated from equation (19) using these values for
the parameters b and 77, The correctons due to second-order and higher clusters are
not considered in the minimization process since the exact form of these correction terms
is very complicated. The contributions to the energy from these two corrections are
computed from equations (12) and (18) by employing the variationally determined values
for the parameters b and 57/, In evaluating the second-order energy contribution from
the tensor part of the Reid soft-core interaction, we have used the parameter values
BTV of the two channels which are coupled by the tensor interaction. The second-
order correction to energy is calculated by using the value for the Fermi momentum
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kg obtained by equating h2k2/2m to the average of the kinetic energies of the last filled
proton and neutron orbits. This gives

1
ke = E(Np+ N, +3)12

where N (N, ) is the major oscillator shell quantum number for the last proton (neutron)
orbit. It has been verified that the second-order contribution is not sensitive to the slight
variation of kg. We, however, find that it is sensitive to the variation in the parameter
U in equation (15). For example, °°Zr, the binding energy per particle comes out
to be 8:15, 9-13 and 10-44 MeV for U = 80, 60 and 40 MeV respectively. We take U
to be the difference of the average first-order energy K + E, of the nucleus and the average
kinetic energy as is done in the self-consistent nuclear matter calculations
1 3 h2kE

U= A(K+E2) Sk
The effective mass parameter m* is found to be kp dependent in nuclear matter calcula-
tions (Grange and Preston 1973). It increases with the decrease of k. In the present
calculations, we have considered the two extreme values m* = m and m* = 0-5m since
for the relevant kg values corresponding to the nuclei under consideration, m* lies be-
tween these two values.

The results of the calculation for the binding energies and rMs radii for the nuclei
in the mass region 16 < A < 208 are presented in table 1. The calculated binding
energies shown in table 1 are corrected for Coulomb energy (Khadkikar and Warke
1969) computed from the oscillator wavefunctions ® with a variationally determined
parameter b. In heavy nuclei, the contributions to binding energy coming from the

Table 1. The calculated and experimental values of the binding energies per nucleon and
the rus radii of nuclei are tabulated. The binding energies are computed with two extreme
values of the effective mass parameter m*. The experimental binding energies are taken from
Mattauch et al (1965) and experimental rRMS radii are from Collard et al (1967). The numbers
in the brackets are the results of BBG calculations (Davies et al 1972).

Binding energy per nucleon (MeV) RMS radius (fm)
Nucleus
Calculated Experiment Calculated Experiment
m*=m m* = 0-5m

160 1.32 0-13 (4.25) 7976 2.81(2:62) 275
28gi 3-08 1-40 8.448 3.07 3-06
328 3.38 1-65 8-493 319 322
40Ca 529 318 (446)  8-552 330 (3-18) 345
48Ca 7-52 5.51 8-667 330 344
S6Ni 7-11 5-50 8.643 3.84 3.84
2Ge 9-81 7-84 8732 375 4.02
83gr 11-02 8-81 8732 3.85 4.10
90Zr 10-96 873 8.710 388 4.30
°6Zr 11.57 9.41 8-635 3.93 4.32
12080 11.94 9.68 8.500 4.13 460
140Ce 13.77 11-57 8377 4.34 4.89
146Gd 13.75 11.50 8250 4.41 4.94

208pp 14.45 12.26 (3-46)  7-867 4-68 (4-73) 550
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second-order and three-body cluster terms are approximately 20 % and 9 %, respectively,
of the first-order potential energy E, in equation (6). In the light nuclei, however, these
contributions are approximately 609, and 19 respectively. The details of the contri-
butions to the binding energy coming from the two-body and three-body clusters and
the second-order corrections are displayed in table 2. The total contribution of the
correlations to the RMs radii is found to be approximately 6 %, of the bare rRMs calculated
with the oscillator wavefunctions.

Table 2. The calculated contributions to the binding energy (in MeV) from the two-body
correlation energy V|, the second-order correction ¥, obtained with two extreme values of
the effective mass parameter m* and the three-body cluster correction E, are presented.

V2

Nucleus Vi m*=m m* = 0-5m E,

150 231.40 137.89 114-65 1-16
288i 548.07 261.04 213.88 1.54
328 64241 310:65 25535 1-88
40Ca 101266 47251 38771 46-99
*8Ca 1200-01 52070 424.35 27.53
2Ge 1968-21 858-71 71673 76-59
88gr 264361 1062-39 868.56 159-32
90Zr 275743 1105.48 904-54 183-47
°6Zr 283276 1158-54 950-53 14542
1208n 3960-32 1468-51 119739 32344
140Ce 4303-97 1705-53 1397-83 22799
146Gd 4632.32 1834.44 1506-05 27423
208pp 7328.23 1803-05 1347-62 658.16

The computed binding energies are in reasonable agreement with the corresponding
experimental values for nuclei in the mass region A ~ 90. As compared to the experi-
mental binding energies, the computed values are quite small in the light nuclei whereas
they are large in the heavy nuclei. The calculated RMs radii are in good agreement with
the experimental values for light nuclei (4 < 56) whereas the heavy nuclei show a tendency
of collapsing as can be seen from their small sizes and large binding energies in table 1.

The channel dependence of the correlation functions is displayed in table 3. The values
of the channel parameter 7/ and the average correlation volume [ [(f*57)*~1]dr
for the important 'S, and 3S, channels are insensitive to the variation of the mass
number A4 as seen from table 3. This trend can also be seen from the results obtained in
the BBG calculations of binding energies in O and nuclear matter for the same Reid
soft-core NN interaction. The wound integrals (which are the measures of the correla-
tion volumes in the Jastrow method)in 'S, and *S, channels are 0-028 and 0-11 in nuclear
matter (Grange and Preston 1973) whereas they are 0026 and 0-14 in 6O (Demos and
Banerjee 1972). It can be seen from table 3 that the correlation volumes for these two
channels are of the same order of magnitude as the corresponding wound integrals in
BBG calculations (Grange and Preston 1973, Demos and Banerjee 1972). The present
results in table 3 also indicate that the correlation volumes of 'P, and *P, channels are
larger than the corresponding P, and *P, channels and they are very small in the D
channels. A similar trend is noticed in the wound integrals of these channels in the
nuclear matter calculations carried out in the BBG approach (Grange and Preston 1973).
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Table 3. The channel parameters #'S7/ and the correlation volumes for various nuclei are
displayed. In each nucleus, the numbers in the first and second row indicate the values of
BT and the correlation volume respectively. The tabulated values correspond to the
minimum of the first-order energy as stated in the text.

Nucleus 'S, 38, 'p, 3p, P, P, 'D, D, °D,
160 319 120 048 127 057 310 118 118 118
0018 0068 0057 0008 0042 0001 0001 0001 0001
40Ca 310 120 050 118 039 607 196 118 223
0021 0074 0062 0012 0092 0000 0000 0001 0.000
48Ca 310 120 050 118 050 650 205 118 223
0020 0069 0-057 0010 0057 0000 0000 0001 0000
907 310 120 045 120 041 816 275 127 310
0017 0061 0059 0009 0.068 0000 0000 0001 0000
So7r 310 120 050 120 043 825 284 127 310
0016 0057 0045 0008 0058 0000 0000 0001 0-000
120Gy 312 114 045 120 039 894 310 127 353
0016 006! 0055 0008 0068 0000 0000 0001 0000
140Ce 310 120 050 1.2t 045 912 319 135  3.53
0014 0051 0039 0007 0047 0000 0000 0001 0000
146Gd 310 120 050 121 045 912 319 135 362
0014 0051 0039 0007 0047 0000 0000 0001 0000
208py, 312 1114 045 1.20 041 100 362 135 428

0-014 0051 0-045 0007 0051 0000 0000 0000 0-000

4. Conclusions

We have calculated the binding energies and sizes of nuclei in the mass region 16 < A
< 208 in the JCE approach by employing a Reid soft-core NN interaction (Reid 1968).
The computed binding energies are in fair agreement with the experimental values in the
mass region A ~ 90 whereas they are small in lighter nuclei and large in heavier nuclei
as compared to the corresponding experimental values. In this connection we point out
two A-dependent effects in the evaluation of the second-order contribution to the binding
energy. The first is related to the use of the effective mass m* which should increase in
light nuclei (small k;) and decrease in heavy nuclei (large kg) in accordance with the
ky dependence of m* in nuclear matter calculations (Grange and Preston 1973). The
other effect is related to the neglected terms in the second-order correction in the Jastrow
approach (Woo 1966). This contribution of the neglected terms has the opposite sign
and its A dependence is similar to that of the leading term included in the present calcula-
tions. Both these effects are in the right direction to improve the agreement between the
calculated and experimental binding energies. The computed small binding energies
in light nuclei (4 < 40) are probably due to the known fact (Iwamoto and Yamada
1957) that the Jastrow expansion becomes poorer for the larger ratio of the correlation
volume to the nuclear volume. The calculated sizes are in good agreement with the
experimental data for nuclei with 4 < 56 whereas they are predicted to be quite small
for the heavy nuclei. The agreement in the rRMs radii can be improved by incorporating
the important effect of tensor force on the nuclear saturation properties. The RMS
radii obtained in the BBG calculations (Davies et al 1972) performed with the same NN
interaction are nearly the same as in our calculations though ours are in slightly better
agreement with the experimental data. The binding energies computed in the two
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methods differ substantially in the case of 1°0 and 2°®Pb whereas they are comparable
in the case of *°Ca. The BBG calculations (Davies et al 1972) yield too low a binding
energy in 298Pb.

It should be stressed here that there exists a striking similarity between the wound
integrals for various channels in the BBG method and the corresponding correlation
volumes in the Jastrow approach suggesting the use of state-dependent correlation
functions in the latter approach. The present calculations show that the contribution of
the three-body cluster correction to the two-body correlation energy is at the most 99/,
thereby indicating a good convergence of the cluster expansion.
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