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Abstract. The binding energies and RMS radii of nuclei in the mass region 16 6 A 6 208 
are calculated in the Jastrow cluster expansion method by including the second-order 
correction to the energy. The Reid soft-core NN interaction has been employed in the 
calculations. The binding energies are predicted reasonably well for the nuclei in the mass 
region A - 90 whereas they are underestimated in nuclei with A < 56 and overestimated 
in nuclei with A > 120. The calculated RMS radii are in good agreement with the experi- 
mental data for nuclei with A Q 56 but not for heavy nuclei where considerable compression 
is predicted. The contribution of the three-body cluster correction to the two-body cor- 
relation energy is estimated to be at the most 9 %, thereby indicating a good convergence of 
the cluster expansion. Our results are compared with those recently obtained from the 
Brueckner-Bethe-Goldstone method using the same NN interaction. 

1. Introduction 

A systematic derivation of the cluster expansion of the energy in the Jastrow approach 
(Jastrow 1955) to the nuclear many-body problem was given by Iwamoto and Yamada 
(1957). There are very few applications of this method to calculate the binding energies 
of finite nuclei. Dabrowski (1958a, b) was the first one to  investigate the details of this 
method in connection with the binding energy of l6O using a specific central nucleon- 
nucleon (NN) interaction. Recently there has been considerable interest in finding out a 
connection between the Brueckner-Bethe-Goldstone (BBG) reaction matrix approach 
(for a review of this BBG approach, see Day 1967) and the Jastrow cluster expansion 
(JCE) method. With reasonable and well defined approximations, Day (1971) has shown 
that the sum of a particular set of diagrams from the perturbation theory gives a many- 
body wavefunction of the Jastrow form. Attempts (Lassey and Sprung 1971) have also 
been made to remove some of the approximations made by Day (1971). For a special 
choice of NN interaction, the nuclear matter binding energy calculated (Wong 1971a) 
from the JCE method in the independent pair approximation comes out to be much 
larger than that calculated from the BBG reaction matrix approach. This difference 
is shown (Wong 1971a) to arise from the absence of the dispersion effects in this simpler 
form of the JCE method. With the inclusion of dispersion effects and with the special 
choice of correlation function, many authors (Wong 1971b, Providencia and Shakin 
1971, Shakin 1971, Ristig and Clark 1972) have attempted to show how the JCE method 
for the energy of a rhany-body system could be related to  the BBG reaction matrix 
method. These suggestions for the special choice of the correlation function implicitly 
amount to either doing the complicated BBG calculations or making comparatively 
simpler Jastrow calculations quite difficult. The motivations behind the present work 
are: (i) to calculate the binding energies and the sizes of nuclei in the mass region 
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16 < A < 208 in the JCE approach by employing a realistic NN interaction, since we 
have not yet noticed such calculations for heavy mass nuclei; (ii) to see whether there is a 
qualitative agreement between the predictions of the JCE and BBG methods for the 
nuclear binding energies and sizes; (iii) to find out whether the JCE approach is suitable 
in the case of realistic NN interactions such as the Reid soft-core potential (Reid 1968); 
and finally (iv) to study the convergence of the JCE method for the binding energy and 
RMS radius. 

The details of the calculations are given in 9 2. The results are presented in 9 3 and 
and the conclusions are summarized in 8 4. 

2. Energy calculation with Jastrow wavefunction 

The hamiltonian of the A-nucleon system can be written as 

H = T,+ K j ,  
i i <  j 

where Tis  the kinetic energy operator and Vis the NN interaction. We employ the 
variational wavefunction of the form 

Y =  nfij q 1 , 2  , . . . ,  A). (2) 
[ i < j  1 

Here @ is a determinantal wavefunction of A nucleons and fij is the correlation function. 
From the nuclear binding energy calculations in the BBG approach, the wound integrals 
are found to be strongly channel dependent (Grange and Preston 1973, Demos and 
Banerjee 1972). The wound integral in a particular channel is a measure of the deviation 
of the correlation function in that channel from unity. This implies that one should 
employ channel-dependent correlation functions in the Jastrow approach. The effect 
of the state-dependent correlation functions in the Jastrow approach is discussed by 
Schafer and Schutte (1972). For a state-dependent correlation function fij, the simple 
product in equation (2) is not a symmetric function under the exchange of particle co- 
ordinates sincefij does not commute with&,. In order to make the total wavefunction 
'I! in equation (2) antisymmetric, the product in the square bracket should be symmetrized 
since the determinant @ is an antisymmetric function of A nucleons. The square bracket 
in equation (2) indicates this symmetrized product of correlation functions. In the 
calculations reported in this paper, we use the channel (ISTJ)-dependent correlation 
function with one variational parameter p in each channel. The form 

for the correlation function is chosen in view of the Reid soft-core NN interaction 
(Reid 1968) employed in the present calculations. The gaussian form is preferred to the 
exponential form since df/dr vanishes at r = 0. The calculations are performed for 
nuclei which can be described by the closure of either a major shell or a j subshell for 
both protons and neutrons. In equation (2), the determinantal wavefunction 0 is con- 
structed from the single-particle orbitals $,(i) where c( specifies all the necessary quantum 
numbers for the orbital. In a variational approach, all the unknown functions fij and 
$,(i) should be determined by minimizing the total energy of the system. However, such 
a general procedure is very laborious in the case of heavy nuclei under investigation. 
In the absence of correlations (Aj  = l), it is found (Gunye and Warke 1970) that the 
wavefunctions @ generated from the sihgle-particle harmonic oscillator wavefunctions 
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with one variable parameter b = (h/Mo)"' provide a good approximation for com- 
puting binding energies and RMS radii for the nuclei under consideration here. Hence 
in the present Jastrow calculations, only the channel parameters /?ISTJ in the correlation 
functions f f S T J  and the oscillator parameter b in the determinantal wavefunction are 
determined variationally. The Jastrow expansion of the energy E with the correlated 
wavefunction Y can be obtained by following the derivation of Iwamoto and Yamada 
(1957) and Dabrowski (1958a, b) 

E = K + E 2 + E 3 .  (4) 

K = 1 (ilTli) ( 5 )  

The kinetic energy K and the two-body correlation energy E, can be expressed as 

i  

E,? = 41 (ijIW12IU)a, 
i j  

where the suffix a indicates the antisymmetrization of the matrix element and 
a 2  2 

The non-commutativity of the channel-dependent correlation functions Lj, f j k  and the 
interaction operator makes the treatment of the three-body effects very complicated. 
Since we are interested only in estimating the contribution from the three-body clusters, 
we neglect the effect of this non-commutativity. In this approximation, the three-body 
correlation energy can be expressed as 

The sums in equations (9, (6 )  and (8) run over the occupied single-particle states in 0. 
For spherical nuclei with central NN interactions, the two-body correlation energy E, 
can be expressed as 

The index lSTJ for W,, in equation (10) indicates the channel dependence of the cor- 
relation function. The nuclear C coefficients in equation (10) were evaluated previously 
(Gunye and Warke 1970). In order to simplify the calculations for evaluating the con- 
tribution from three-body cluster terms E , ,  we make the following approximations : 

1 1 (kjIhIlj)a 'Y 28,cl (ijthIij)a 
i j  

(i) 
i 

(ii) (ijlhlkl), = 0 for i ,  j # k, 1. 
The averaging approximation (i) is expected to be good for the short-range correlation 
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function h(rl,). The orthogonality of the single-particle wavefunctions will make the 
matrix element (ijlhlkl) quite small for i, j # k ,  I in the case of the short-range function la. 
The explicit calculations are carried out in the case of l 6 0  to test the validity of these 
approximations. The value Zj(kjlhlkj) = -0.47 (for k = Os orbit) is very close to 
A-'Zij(ijlh1ij) = -0.42. The value (ijlhlij), = -0.01 for i = j ( O s i )  # k = l(1s)). The 
value of Zj(kjlhlf'j)a is exactly zero for I ,  # I ,  orj, # j , .  The maximum value of this sum 
is -0.2 when k = Os 3 and I = 1s orbits. However, the contribution of such terms 
comes only in one of the three-body cluster correction terms. With the approximations 
(i) and (ii), E, can be written as 

with 0, = (dh/dr)Yl,. The matrix element (ijlOplij)a, however, vanishes in view of the 
parity considerations. Then employing the C coefficients we can finally express E ,  in 
the form 

In reducing the first term in equation (l l) ,  we have replaced (ijlh'STJIij), the matrix 
element, by its average value with the corresponding C coefficients for the channel ZSTJ 
as the weighting factors. 

The two-body correlation energy E ,  in equation (6) indicates that qj is the effective 
NN interaction in the model space. In BGG method, the second-order contribution 
is already included in deriving the effective NN interaction whereas it is not so in the 
present approach. Consequently one has to explicitly add the second-order (in W )  
contribution to the energy. An additional reason for including the second-order con- 
tribution is that the tensor force contributes substantially to the binding energy and, in 
particular for spherical nuclei, this contribution comes from higher orders in the non- 
central part of the NN interaction. The usual second-order perturbation correction 
has only one term whereas in the Jastrow approach, this correction has three terms 
(Woo 1966). One of these is just like the ordinary second-order correction and the other 
two terms arise from the non-orthogonality of the complete set of correlated basis 
functions. In the lowest order of h, one of the latter terms is proportional to the off- 
diagonal matrix element of h and the other to its square. In view of the approximation 
(ii), we have not evaluated these terms in this paper. Since the proportionality constant 
in these corrections is the two-particle two-hole energy (evaluated in the Jastrow approach 
to zeroth order) and its square, this contribution can be quite important. However, due 
to the complicated nature of these terms, particularly in large nuclear systems, we have 
no alternative but to omit these corrections in the present paper. We have evaluated 
only the usual second-order (in W )  contribution to the energy by following the approach 
of Bhaduri and Warke (1968). The density-dependent effective interaction is obtained 
by applying the criterion that it reproduces the correct second-order contribution in 
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nuclear matter. From this condition, the required effective interaction V,,, is given by 

The prime on the summation indicates the sum is to be taken over the regions 

k,p d k, and Ik+qI,IP-ql > kF, 

where k, is the Fermi momentum. The energy denominator in equation (13) is 

where the additional energy for the occupied states is taken as - U. After carrying out 
straightforward algebra and averaging over the directions of Q = q+ &k-p), we get 

Here j, is the spherical Bessel function. In general V' = Vk+SI2Vi.  where V,(V,) is 
the central (tensor) component ofthe NN interaction. In order to simplify the expression 
for V',,,, we carry out averaging of l/e over k , p  within the Fermi surface and of Q over 
the region of integration for fixed q. Let us define P( U ,  q/2k,) and Q(q) as follows 

Evaluating these rather involved integrals, we obtain 

(El2=/  4022+3 10 for A > 1, 

where 2 = +S = q / 2 k F ,  

52' - 4 5 P  - 532" + 75A3 + 174A2 + 1252 + 63 
40(3 - L 2 )  for i. d 1 

P(U,X) = x2[36v3+23(2v+ 1 ) 2 - 4 8 ( ~ +  1 ) 2 + 5 4 ( ~ + 1 ) - ~ 2 ( 8 ~ + 3 ) ]  

v + l - x  
+ ~ x [ ~ v ( ~ - v ) ( v +  1)2+5x2(1-2v2)-x4]ln ~ 

( v +  1 +.) 
2v+ 1 - x  

(2v+ 1 +J +$x[(2v - 3)(2v + 1)2 + 6x2(4v2 - 1) + x"] In 

q v +  1 +x)(v+ 1 -x) 
(2v+ 1 +x)(2v+ 1 -x) 

+ 2oVx4 In 
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( v +  1 +x)(v+ 1 -x) 
+4(v+ 1)3(v2 - 3v+ 1) In 

(2v+ 1 +x)(2v+ 1 -x) 
4(v+ 1 +x)(v+ 1 -x) +20x2(1 + 3v- 2v3) In 

for x < 1 
(2v+ 1 +x)(2v+ 1 -x) ( 4v2 

-40v3x2 In 

P( U, x) = 4(v + x ) ~  + 22(v + x) + 4[(v + x ) ~  - 5(v + x ) ~  - 5(v + x ) ~  + 13 h ( v +  x + 1) 

+ ~ [ ( v + x ) ~  - ~ ( v + x ) ~  + 5(v +x), - 11 In(v+x - 1) 

+ 8[5(  v + x ) ~  - (v + x ) ~ ]  ln(v + x) for x > 1, (17) 

where v = (m/h2)(  Ulqk,). For U = 0, this expression for P( U, x) reduces to that derived 
by Euler (1937) and by Levinger et al (1960). Using these functions Q(q) and P(U,  x), 
the effective interaction takes the final form 

The second-order contribution to energy is incorporated by replacing WISTJ with 
WISTJ + VLtFJ in equation (10) where VL:FJ is obtained from equation (18) after replacing 
V’ by W’ on the right hand side. 

The RMS radii R ,  are calculated with centre of mass correction. The final expression 
for R ,  in Jastrow cluster expansion is 

A 2 R L l =  1 (2T+ 1)(2J+ l)C:&(nllr2(l +h’STJ)(n’l’)  + RS (19) 
n l S T J  

n’l 

where the three-particle cluster correction RS to the mean square radius R L  is obtained 
from the corresponding energy expression in equation (12) after replacing W,, by 
f :21:2. 

3. Results and discussion 

The binding energies and RMS radii of nuclei in the mass region 16 < A < 208 are cal- 
culated by using the Reid soft-core NN interaction (Reid 1968). The variational para- 
meters PISTJ in the correlation function of equation (3) and the oscillator size parameter 
b are determined by minimizing the energy K + E ,  given in equations ( 5 )  and (6)  res- 
pectively. The RMS radius is then calculated from equation (19) using these values for 
the parameters b and p tSTJ .  The correctons due to second-order and higher clusters are 
not considered in the minimization process since the exact form of these correction terms 
is very complicated. The contributions to the energy from these two corrections are 
computed from equations (12) and (18) by employing the variationally determined values 
for the parameters b and In evaluating the second-order energy contribution from 
the tensor part of the Reid soft-core interaction, we have used the parameter values 
PIsTJ of the two channels which are coupled by the tensor interaction. The second- 
order correction to energy is calculated by using the value for the Fermi momentum 
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k ,  obtained by equating h2k$/2m to the average of the kinetic energies of the last filled 
proton and neutron orbits. This gives 

where N p ( N , )  is the major oscillator shell quantum number for the last proton (neutron) 
orbit. It has been verified that the second-order contribution is not sensitive to the slight 
variation of k, .  We, however, find that it is sensitive to the variation in the parameter 
U in equation (15). For example, 90Zr, the binding energy per particle comes out 
to be 8.15, 9.13 and 10.44 MeV for U = 80, 60 and 40 MeV respectively. We take U 
to be the difference of the average first-order energy K + E ,  of the nucleus and the average 
kinetic energy as is done in the self-consistent nuclear matter calculations 

1 3 h2k$ 
A 5 2m* ' 

U = - ( K + E 2 ) -  -- 

The effective mass parameter m* is found to be k ,  dependent in nuclear matter calcula- 
tions (Grange and Preston 1973). It increases with the decrease of k,.  In the present 
calculations, we have considered the two extreme values m* = m and m* = 0.5m since 
for the relevant k ,  values corresponding to the nuclei under consideration, m* lies be- 
tween these two values. 

The results of the calculation for the binding energies and RMS radii for the nuclei 
in the mass region 16 < A < 208 are presented in table 1. The calculated binding 
energies shown in table 1 are corrected for Coulomb energy (Khadkikar and Warke 
1969) computed from the oscillator wavefunctions 0 with a variationally determined 
parameter 6. In heavy nuclei, the contributions to binding energy coming from the 

Table 1. The calculated and experimental values of the binding energies per nucleon and 
the RMS radii of nuclei are tabulated. The binding energies are computed with two extreme 
values of the effective mass parameter m*. The experimental binding energies are taken from 
Mattauch et al(1965) and experimental RMS radii are from Collard et a/ (1967). The numbers 
in the brackets are the results of BBG calculations (Davies er al 1972). 

Binding energy per nucleon (MeV) RMS radius (fm) 
Nucleus 

Calculated Experiment Calculated Experiment 
m* = m  m* =0.5m 

l60 1.32 
28si 3.08 
32s 3.38 
40Ca 5.29 
48Ca 7.52 
56Ni 7.1 1 
"Ge 9.8 1 

11.02 
"Zr 10.96 
96Zr 11.57 
'*'Sn 11.94 
l4'Ce 13.77 
146Gd 13.75 
lo8Pb 14.45 

0.13 (4.25) 
1.40 
1.65 
3.18 (4.46) 
5.51 
5.50 
7.84 
8.81 
8.73 
9.4 1 
9.68 

11.57 
11.50 
12.26 (3.46) 

7.976 
8.448 
8.493 
8.552 
8.667 
8.643 
8,732 
8.732 
8.710 
8.635 
8.500 
8,377 
8.250 
7.861 

2.81 (2.62) 
3.07 
3.19 
3.30 (3.18) 
3.30 
3.84 
3.75 
3.85 
3.88 
3.93 
4.13 
4.34 
441 
468 (4.73) 

2.75 
3.06 
3.22 
3.45 
3.44 
344 
4.02 
4.10 
4.30 
4.32 
4.60 
4.89 
4.94 
5.50 
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second-order and three-body cluster terms are approximately 20 % and 9 %, respectively, 
of the first-order potential energy E,  in equation (6). In the light nuclei, however, these 
contributions are approximately 60% and 1 % respectively. The details of the contri- 
butions to the binding energy coming from the two-body and three-body clusters and 
the second-order corrections are displayed in table 2. The total contribution of the 
correlations to the RMS radii is found to be approximately 6 % of the bare RMS calculated 
with the oscillator wavefunctions. 

Table 2. The calculated contributions to the binding energy (in MeV) from the two-body 
correlation energy VI, the second-order correction V, obtained with two extreme values of 
the effective mass parameter m* and the three-body cluster correction E ,  are presented. 

v2 

Nucleus "1 m f  = m m* = 0.5m E3 

231.40 
548.07 
642.41 

1012.66 
1200.0 1 
1968.21 
2643.61 
2757.43 
2832.76 
3960.32 
4303.97 
46 3 2.3 2 
7328.23 

137.89 
261.04 
3 10.65 
472.51 
520.70 
858.71 

1062.39 
1105.48 
1158.54 
1468.5 1 
1705.53 
1834.44 
1803.05 

114.65 
213.88 
255.35 
387.7 1 
424.35 
116.73 
868.56 
904.54 
950.53 

1197.39 
1397.83 
1506.05 
1341.62 

1.16 
1.54 
1.88 

46.99 
27.53 
76.59 

159.32 
183.47 
145.42 
323.44 
227.99 
274.23 
658.16 

The computed binding energies are in reasonable agreement with the corresponding 
experimental values for nuclei in the mass region A - 90. As compared to the experi- 
mental binding energies, the computed values are quite small in the light nuclei whereas 
they are large in the heavy nuclei. The calculated RMS radii are in good agreement with 
the experimental values for light nuclei ( A  < 56) whereas the heavy nuclei show a tendency 
of collapsing as can be seen from their small sizes and large binding energies in table 1. 

The channeldependence ofthe correlation functions is displayed in table 3. The values 
of the channel parameter / ? I S T J  and the average correlation volume J [ ( f ' s T J ) 2  - 13 ds 
for the important ' S o  and 3S1 channels are insensitive to  the variation of the mass 
number A as seen from table 3. This trend can also be seen from the results obtained in 
the BBG calculations of binding energies in l6O and nuclear matter for the same Reid 
soft-core NN interaction. The wound integrals (which are the measures of the correla- 
tion volumes in the Jastrow method) in 'So and 3S, channels are 0.028 and 0.1 1 in nuclear 
matter (Grange and Preston 1973) whereas they are 0.026 and 0.14 in l6O (Demos and 
Banerjee 1972). It can be seen from table 3 that the correlation volumes for these two 
channels are of the same order of magnitude as the corresponding wound integrals in 
BBG calculations (Grange and Preston 1973, Demos and Banerjee 1972). The present 
results in table 3 also indicate that the correlation volumes of 'PI and 3P, channels are 
larger than the corresponding 3P0 and 3P2 channels and they are very small in the D 
channels. A similar trend is noticed in the wound integrals d these channels in the 
nuclear matter calculations carried out in the BBG approach (Grange and Preston 1973). 
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Table 3. The channel parameters /?"' and the correlation volumes for various nuclei are 
displayed. In each nucleus, the numbers in the first and second row indicate the values of 
pfsTJ and the correlation volume respectively. The tabulated values correspond to the 
minimum of the first-order energy as stated in the text. 

Nucleus IS, 3S1 IP, 3P0 'PI 3P, ID, 3D1 3D, 

3.19 
0.0 1 8 
3.10 
0.021 
3.10 
0.020 
3.10 
0.017 
3.10 
0.0 16 
3.12 
0.016 
3.10 
0.0 14 
3.10 
0.0 14 
3.12 
0.0 14 

1.20 
0.068 
1.20 
0.074 
1.20 
0.069 
1.20 
0.061 
1.20 
0.057 
1.14 
0.06 1 
1.20 
0.05 1 
1.20 
0,051 
1.14 
0.05 1 

0.48 
0.057 
0.50 
0.062 
0.50 
0.057 
0.45 
0.059 
0.50 
0.045 
0.45 
0.055 
0.50 
0.039 
0.50 
0.039 
0.45 
0.045 

1.27 
0,008 
1.18 
0.012 
1.18 
0.0 10 
1.20 
0,009 
1.20 
0.008 
1.20 
0,008 
1.21 
0.007 
1.21 
0.007 
1.20 
0.007 

0.57 3.10 
0,042 0.001 
0.39 6.07 
0.092 0.000 
0.50 6.50 
0.057 0.000 
0.41 8.16 
0.068 0.000 
0.43 8.25 
0.058 0.000 
0.39 8.94 
0.068 0.000 
0.45 9.12 
0.047 0.000 
0.45 9.12 
0,047 0.000 
0.41 10.0 
0.051 0.000 

1.18 1.18 1.18 
0.001 0.001 0.001 
1.96 1.18 2.23 
0.000 0.001 0.000 
2.05 1.18 2.23 
0.000 0~001 0.000 
2.75 1.27 3.10 
0~000 0~001 0.000 
2.84 1.27 3.10 
0.000 0.001 0.000 
3.10 1.27 3.53 
0.000 0.001 0.000 
3.19 L35 3.53 
0.000 0.001 0.000 
3.19 1.35 3.62 
0.000 0.001 0.000 
3.62 1.35 4.28 
0.000 0.000 0.000 

4. Conclusions 

We have calculated the binding energies and sizes of nuclei in the mass region 16 < A 
6 208 in the JCE approach by employing a Reid soft-core NN interaction (Reid 1968). 
The computed binding energies are in fair agreement with the experimental values in the 
mass region A 90 whereas they are small in lighter nuclei and large in heavier nuclei 
as compared to the corresponding experimental values. In this connection we point out 
two A-dependent effects in the evaluation of the second-order contribution to the binding 
energy. The first is related to the use of the effective mass m* which should increase in 
light nuclei (small kF) and decrease in heavy nuclei (large kF) in accordance with the 
k, dependence of m* in nuclear matter calculations (Grange and Preston 1973). The 
other effect is related to the neglected terms in the second-order correction in the Jastrow 
approach (Woo 1966). This contribution of the neglected terms has the opposite sign 
and its A dependence is similar to that of the leading term included in the present calcula- 
tions. Both these effects are in the right direction to improve the agreement between the 
calculated and experimental binding energies. The computed small binding energies 
in light nuclei ( A  < 40) are probably due to the known fact (Iwamoto and Yamada 
1957) that the Jastrow expansion becomes poorer for the larger ratio of the correlation 
volume to the nuclear volume. The calculated sizes are in good agreement with the 
experimental data for nuclei with A < 56 whereas they are predicted to be quite small 
for the heavy nuclei. The agreement in the RMS radii can be improved by incorporating 
the important effect of tensor force on the nuclear saturation properties. The RMS 
radii obtained in the BBG calculations (Davies et a1 1972) performed with the same NN 
interaction are nearly the same as in our calculations though ours are in slightly better 
agreement with the experimental data. The binding energies computed in the two 
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methods differ substantially in the case of l60 and '08Pb whereas they are comparable 
in the case of 40Ca. The BBG calculations (Davies et a1 1972) yield too low a binding 
energy in '08Pb. 

It should be stressed here that there exists a striking similarity between the wound 
integrals for various channels in the BBG method and the corresponding correlation 
volumes in the Jastrow approach suggesting the use of state-dependent correlation 
functions in the latter approach. The present calculations show that the contribution of 
the three-body cluster correction to the two-body correlation energy is at the most 9 %, 
thereby indicating a good convergence of the cluster expansion. 
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